85 research outputs found

    Improved Runtime Bounds for the Univariate Marginal Distribution Algorithm via Anti-Concentration

    Get PDF
    Unlike traditional evolutionary algorithms which produce offspring via genetic operators, Estimation of Distribution Algorithms (EDAs) sample solutions from probabilistic models which are learned from selected individuals. It is hoped that EDAs may improve optimisation performance on epistatic fitness landscapes by learning variable interactions. However, hardly any rigorous results are available to support claims about the performance of EDAs, even for fitness functions without epistasis. The expected runtime of the Univariate Marginal Distribution Algorithm (UMDA) on OneMax was recently shown to be in O(nλlogλ)\mathcal{O}\left(n\lambda\log \lambda\right) by Dang and Lehre (GECCO 2015). Later, Krejca and Witt (FOGA 2017) proved the lower bound Ω(λn+nlogn)\Omega\left(\lambda\sqrt{n}+n\log n\right) via an involved drift analysis. We prove a O(nλ)\mathcal{O}\left(n\lambda\right) bound, given some restrictions on the population size. This implies the tight bound Θ(nlogn)\Theta\left(n\log n\right) when λ=O(logn)\lambda=\mathcal{O}\left(\log n\right), matching the runtime of classical EAs. Our analysis uses the level-based theorem and anti-concentration properties of the Poisson-Binomial distribution. We expect that these generic methods will facilitate further analysis of EDAs.Comment: 19 pages, 1 figur

    On the Impact of Mutation-Selection Balance on the Runtime of Evolutionary Algorithms

    Full text link
    The interplay between mutation and selection plays a fundamental role in the behaviour of evolutionary algorithms (EAs). However, this interplay is still not completely understood. This paper presents a rigorous runtime analysis of a non-elitist population-based EA that uses the linear ranking selection mechanism. The analysis focuses on how the balance between parameter η\eta, controlling the selection pressure in linear ranking, and parameter χ\chi controlling the bit-wise mutation rate, impacts the runtime of the algorithm. The results point out situations where a correct balance between selection pressure and mutation rate is essential for finding the optimal solution in polynomial time. In particular, it is shown that there exist fitness functions which can only be solved in polynomial time if the ratio between parameters η\eta and χ\chi is within a narrow critical interval, and where a small change in this ratio can increase the runtime exponentially. Furthermore, it is shown quantitatively how the appropriate parameter choice depends on the characteristics of the fitness function. In addition to the original results on the runtime of EAs, this paper also introduces a very useful analytical tool, i.e., multi-type branching processes, to the runtime analysis of non-elitist population-based EAs

    Self-adaptation in non-elitist evolutionary algorithms on discrete problems with unknown structure

    Get PDF
    A key challenge to make effective use of evolutionary algorithms is to choose appropriate settings for their parameters. However, the appropriate parameter setting generally depends on the structure of the optimisation problem, which is often unknown to the user. Non-deterministic parameter control mechanisms adjust parameters using information obtained from the evolutionary process. Self-adaptation -- where parameter settings are encoded in the chromosomes of individuals and evolve through mutation and crossover -- is a popular parameter control mechanism in evolutionary strategies. However, there is little theoretical evidence that self-adaptation is effective, and self-adaptation has largely been ignored by the discrete evolutionary computation community. Here we show through a theoretical runtime analysis that a non-elitist, discrete evolutionary algorithm which self-adapts its mutation rate not only outperforms EAs which use static mutation rates on \leadingones, but also improves asymptotically on an EA using a state-of-the-art control mechanism. The structure of this problem depends on a parameter kk, which is \emph{a priori} unknown to the algorithm, and which is needed to appropriately set a fixed mutation rate. The self-adaptive EA achieves the same asymptotic runtime as if this parameter was known to the algorithm beforehand, which is an asymptotic speedup for this problem compared to all other EAs previously studied. An experimental study of how the mutation-rates evolve show that they respond adequately to a diverse range of problem structures. These results suggest that self-adaptation should be adopted more broadly as a parameter control mechanism in discrete, non-elitist evolutionary algorithms.Comment: To appear in IEEE Transactions of Evolutionary Computatio

    Self-adaptation Can Help Evolutionary Algorithms Track Dynamic Optima

    Get PDF
    corecore